메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박성준 (한국항공대학교) 김규민 (한국항공대학교) 황승준 (한국항공대학교) 백중환 (한국항공대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제3호
발행연도
2021.3
수록면
389 - 395 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 샴 네트워크 기반의 객체 추적 알고리즘의 성능 향상을 위한 표적 이미지 교환 모델을 제안한다. 샴 네트워크 기반의 객체 추적 알고리즘은 시퀀스의 첫 프레임에서 지정된 표적 이미지만을 사용하여 탐색 이미지 내에서 가장 유사한 부분을 찾아 객체를 추적한다. 첫 프레임의 객체와 유사도를 비교하기 때문에 추적에 한 번 실패하게 되면 오류가 축적되어 추적 객체가 아닌 부분에서 표류하게 되는 현상이 발생한다. 따라서 CNN(Convolutional Neural Network)기반의 모델을 설계하여 추적이 잘 진행되고 있는지 확인하고 샴 네트워크 기반의 객체 추적 알고리즘에서 출력되는 점수를 이용하여 표적 이미지 교환 시기를 정의하였다. 제안 모델은 VOT-2018 데이터 셋을 이용하여 성능을 평가하였고 최종적으로 정확도 0.611 견고도 22.816을 달성하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 표적 이미지 교환 모델
Ⅳ. 실험
Ⅴ. 결론
REFERENCES

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0