메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
장수평 (순천향대학교) 최재원 (순천향대학교)
저널정보
한국지능정보시스템학회 한국지능정보시스템학회 학술대회논문집 2020년 한국지능정보시스템학회 추계학술대회 초록집
발행연도
2020.11
수록면
35 - 38 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
YouTube is the largest video search and sharing platform in the word, it allows users to upload or share videos as well as comment on the video. Teenagers have a considerable proportion of YouTube users. And YouTube has established a policy of age-restricted content for protecting the physical and mental health of teenagers. However, there is still a lot of restricted content that is not marked as age-restricted content. As adolescents are more likely to be negatively affected by biased and harmful content than adults, it is important to classify restricted content and unrestricted content to protect their online safety. YouTube viewers typically comment on content to express their displeasure or opinions. Comments might be one of the vital sources to perceive about the video quality, perfection, relevancy, and its popularity. Therefore, we suggest a way to analyze content comments to classify restricted content and unrestricted content. In this paper, collected and cleaned comments about two data sets that restricted content"s comments and unrestricted content"s comments. And used wor2vec to display comments as vectors. The classifier was established by CNN and LSTM. It is hoped that by classifying restricted content and unrestricted content, the environment of the sharing website can be purified and the physical and mental health of teenagers can be protected.

목차

Abstract
I. Introduction
II. Figures and Tables
III. Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0