메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yeonho Kim (Kookmin University) Namgyu Kim (Kookmin University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제4호(통권 제205호)
발행연도
2021.4
수록면
21 - 28 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 기존 편평발 측정을 위해 사용되던 다양한 방법의 한계를 보완할 수 있는 새로운 측정 방법으로 전이학습을 적용한 딥러닝 기반 편평발 분류 방법론을 제안한다. 편평발 88장, 정상발 88장으로 이루어진 총 176장의 이미지 데이터를 활용하여, 적은 데이터로도 우수한 예측 모델을 생성할 수 있는 데이터 증폭 기술과 사전학습 모델인 VGG16 구조를 활용하는 전이학습 기술을 적용하여 제안 모델의 학습을 진행하였다. 제안 모델의 우수성을 확인하기 위하여 기본 CNN 기반 모델과 제안 방법론의 예측 정확도를 비교하는 실험을 수행하였다. 기본 CNN 모델의 경우 훈련 정확도는 77.27%, 검증 정확도는 61.36%, 그리고 시험 정확도는 59.09%로 나타났으며, 제안모델의 경우 훈련 정확도는 94.32%, 검증 정확도는 86.36%, 그리고 시험 정확도는 84.09%로 나타나 기본 CNN 모델에 비해 제안 모델의 정확도가 큰 폭으로 향상된 것을 확인하였다.

목차

Abstract
요약
I. Introduction
II. Related Research
III. Proposed Method & Experiment
IV. Experiment Result
V. Conclusions
REFERENCES

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0