메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yun-hui Qu (Xi’an Medical University) Wei Tang (Shaanxi University of Science & Technology) Bo Feng (Shaanxi University of Science & Technology)
저널정보
한국펄프·종이공학회 펄프·종이기술 펄프·종이기술 제53권 제2호(통권 제199호)
발행연도
2021.4
수록면
5 - 14 (10page)
DOI
10.7584/JKTAPPI.2021.04.53.2.5

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
There are some problems in traditional paper defects classification, such as the poor generalization performance, less types of recognition, and insufficient recognition accuracy. The deep learning method provides a new scheme for paper defects classification. However, due to the small sample size of paper defect images set, the over fitting phenomenon is easy to appear in the training process. Aiming this problem, a transfer learning method based on convolutional neural network model is proposed.Firstly, freezing the first seven construction layers of VGG16 network which has been trained by ImageNet, and fine tune the rest convolution layers with the paper defect images set to complete the feature extraction; Secondly, the full connection layers for classification are improved to meet the needs of paper defects classification; Finally, transfer learning strategy is adopted in the training process to improve the efficiency. The experimental results demonstrate that the paper defects classification proposed in our approach can improve the efficiency and accuracy of paper defects recognition. The approach will beneficial for the web inspection process.

목차

ABSTRACT
1. Introduction
2. Paper Defects Classification Based on VGG16 and Transfer Learning
3. Data Acquisition and Preprocessing
4. Results and Discussion
5. Conclusions
Literature Cited

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0