메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
우영운 (동의대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제4호
발행연도
2021.4
수록면
508 - 514 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 지도 학습 기반의 분류기 제안을 위해, 분류 데이터의 각 특징별 소속도를 결정하는 3가지 종류의 퍼지 소속도 함수를 제안하였다. 또한 각 특징별 소속도들의 평균값을 이용하여 분류 결과를 도출하는 과정에 사용되는 평균값 산출 기법을 단순 산술평균이 아닌 다양한 가중치를 활용한 가중치 평균을 이용함으로써 분류기 성능을 향상시킬 수 있는 가능성을 제시하였다. 제안한 기법들의 실험을 위해 Iris, Ecoli, Yeast의 3가지 표준 데이터 세트를 사용하였다. 실험 결과, 서로 다른 특성의 데이터 세트들에 대해서도 고르게 우수한 분류 성능이 얻어질 수 있음을 확인하였고, 기존에 발표된 다른 기법들에 의한 해당 데이터 세트들의 분류 성능과 비교했을 때, 퍼지 소속도 함수의 개선과 가중치 평균 기법의 개선을 통해 더욱 우수한 분류 성능이 가능함을 확인할 수 있었다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안한 퍼지 소속도 함수
Ⅲ. 제안한 가중치 설정 기법
Ⅳ. 실험 및 결과 고찰
Ⅴ. 결론
REFERENCES

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0