메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Vivek Upadhyaya (Malaviya National Institute of Technology) Mohammad Salim (Malaviya National Institute of Technology)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.10 No.3
발행연도
2021.6
수록면
219 - 226 (8page)
DOI
10.5573/IEIESPC.2021.10.3.219

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Magnetic resonance imaging (MRI) is one of the imaging techniques that is very useful for the imaging of soft body tissues. But a problem associated with MRI is the slow processing and time-consuming process. Therefore, in this work, we tried to find out a way to use a compressive sensing approach that can reduce the number of samples that are required to reconstruct an MR image by using k-space. In this work, we also discuss the three types of MR weighted images and try to find out how the types of MR images affect the image quality assurance matrices and the recovered MR images. These matrices also indicate that by using a few numbers of samples from the compressed image, we can reproduce an MR image that is very close to the actual MR image. In this study, we used five body-part MR images in an experiment. One of the very interesting outcomes of this work is that the T2-type recovered MR weighted images are very close to the actual MR images.

목차

Abstract
1. Introduction
2. Literature Review
3. Mathematical Framework for CS-MRI
4. Result and Analysis
5. Conclusion
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0