메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yunfeng Xu (Shanghai University) Yangfan Fang (Shanghai University) Kaili Wang (Shanghai University) Wei Xia (Shanghai University) Guangren Qian (Shanghai University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제27권 제3호
발행연도
2022.6
수록면
1 - 11 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, the permeable-reactive-barrier (PRB) assisted electrokinetic (EK) was used to remediate As/Cr Co-contaminated soil, aiming to explore the optimal remediation conditions and the migration of As/Cr. The effects of PRB active substance, PRB location, voltage gradient and running time on the migration and transformation of Cr and As in simulated As/Cr contaminated kaolin were studied. The optimal parameters were as follows: PRB position was located near the anode (PRB A, the medium of PRB was hydrocalumite (CaAl-LDH)), initial voltage gradient was 1 V/cm, running time was 96 h. Under the optimal conditions, the removal efficiency of total arsenic (TAs) and total chromium (TCr) were 40.1% and 81.0%, respectively. This indicated that EK can effectively migrate As and Cr, and PRB can effectively adsorb As and Cr. The migration of As tends to both anode and cathode, while Cr tends to migrate towards the anode. The XRD patterns and FTIR spectra confirmed that the As immobilized by CaAl-LDH was mainly adsorbed on the surface, while Cr existed in CaAl-LDH by surface adsorption and intercalation.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0