메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서동민 (한국과학기술정보연구원)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제21권 제6호
발행연도
2021.6
수록면
35 - 43 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
감귤의 품질은 일반적으로 당도와 산도로 결정된다. 특히, 당도는 감귤의 맛을 결정하기 때문에 매우 중요한 요소이다. 현재 농가에서 가장 많이 사용하는 감귤 당도 측정 방법은 휴대용 착즙당도계 및 비파괴당도계로 측정하는 방식이다. 이 방법은 개인이 손쉽게 측정 가능한 방법이지만, 감귤농협 정식기계보다 당도수치의 정확성이 떨어지며 특히 0.5 Brix 이상 오차 차이가 발생해 현장에서 사용하기에는 아직 많이 부족하다. 또한, 현재 시점의 측정이지 예측 측정이 아니다. 그래서 본 논문에서는 기존 수집된 감귤 당도 값과 기상 데이터(평균 온도, 습도, 강우량, 일사량, 평균 풍속)을 기반으로 측정되지 않은 날짜의 감귤 당도를 0.5 Brix 이하 오차 범위 내에서 예측하는 AI 모델을 제안했다. 또한, 성능평가를 통해 제안하는 예측 모델이 제주 성산 지역에 대해서는 절대 평균 오차가 0.1154, 하원 지역에 대해서는 0.1983인 것을 확인했다. 마지막으로 제안한 모델은 0.5 Brix 이하 오차 차이를 지원하며, 예측 측정을 지원하는 기술이기에 그 활용성에 있어 진보성이 매우 높을 것으로 기대된다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안하는 AI 기반 감귤 당도 예측 모델
Ⅳ. 성능 평가
Ⅴ. 결론 및 향후 연구
참고문헌

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0