메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김재호 (수원대학교) 김장영 (수원대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제25권 제7호
발행연도
2021.7
수록면
884 - 889 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
국내 코로나19의 감염자 수가 백신과 사회적 거리 두기, 백신 등 여러 가지 노력 덕분에 차츰 줄어드는 듯 보였으나 2020년 2월 20일 특정한 사건 이후 감염자 수가 증가한 것처럼, 2020년 12월부터 또다시 급격히 감염자 수가 증가하는 추세이며 꾸준히 일일 500명가량의 감염자 수가 이어지고 있다. 따라서 Kaggle의 데이터셋을 이용해서 Prophet 알고리즘을 통해 미래 코로나19를 예측하고 사이킷런을 통해 결정계수, 평균 절대 오차, 평균 백분율 오차, 평균 제곱 차, 평균 제곱근 편차를 통해 이 예측에 대한 설명력을 더한다. 또한 코로나19가 급격히 특정한 사건이 없었을 경우 국내 감염자 수를 예측해 앞으로 우리가 미래의 질병에 대해서 방역과 방역 수칙 실천의 중요함을 강조한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 기존연구
Ⅲ. 분석알고리즘
Ⅳ. 실험결과 및 분석
Ⅴ. 결론 및 향후연구
REFERENCES

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001914638