메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
전예찬 (포항공과대학교) 이영현 (포항공과대학교) 김동주 (포항공과대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2021년 한국컴퓨터정보학회 하계학술대회 논문집 제29권 제2호
발행연도
2021.7
수록면
57 - 60 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 기지 설비 중 주요 회전기기인 펌프의 이상탐지 알고리즘을 제안한다. 현재 인공지능을 활용하여 생산현장을 혁신하고자 하는 시도가 진행되고 있으나 외산 솔루션에 대한 의존도가 높은 것에 비해 국내 실정에 맞지 않는 경우가 많다. 이에 따라, 선행 연구를 통해 국내 실정에 맞는 인공지능 기술 도입이 필요하다. 본 연구에서는 VAE(Variational Auto Encoder) 알고리즘을 활용해 회전기기의 고장을 진단하는 알고리즘을 개발하였다. 본 연구 수행을 통한 회전기기의 고장 예지·진단 시스템 개발로 설비의 이상 징후 포착, 부품의 교환 시기 등 보수 일정을 예측하고 최종적으로 이를 통한 설비 가동의 효율 증대와 에너지 비용 감소의 효과를 기대한다.

목차

요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001915695