메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황자운 (University of Seoul) 강명구 (University of Seoul)
저널정보
대한국토·도시계획학회 국토계획 國土計劃 第56卷 第5號(通卷 第258號)
발행연도
2021.10
수록면
182 - 198 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
It is well known that entrepreneurs introduce innovations, create jobs, and contribute to the economic development and resilience of regions. Entrepreneurship is generally defined as entering or opening new markets through the creation of new ventures. Most studies on the locations of entrepreneurial activities have focused on determinants at the macrogeographic scale, such as regional levels or across cities, and often overlooked the fact that neighborhood choices within a city involve different criteria. This study examines the spatial distribution of startups as an indicator of opportunity-based entrepreneurship and which type of agglomeration externalities matters most to startup locations within a city. By analyzing the 2019 venture capital-backed startups in Seoul metropolitan city at the statistical level, we first found that startups were not only concentrated at the macrolevels but also significantly concentrated at the microlevels. Second, patterns of manufacturing startups were more likely to be concentrated in industrial zones while service startups were predominantly concentrated in the commercial business districts. Finally, the econometric results highlight the significant impacts of specialization on startup locations at the micro-geographic level, which has been rarely captured in previous macro-geographic scale analyses. Our finding demonstrates the need for more multiscalar understanding of urban entrepreneurship and suggests a crucial yet overlooked feature of an entrepreneurial city is old but specialized micro industrial clusters in the city.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론 및 선행연구 고찰
Ⅲ. 자료, 변수와 분석의 방법
Ⅳ. 분석의 결과
Ⅴ. 결론 및 시사점
인용문헌 References

참고문헌 (80)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-539-002161802