메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gerardo Ondo Micha (Sungkyunkwan University) Chul-Hwan Kim (Sungkyunkwan University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제11호
발행연도
2021.11
수록면
1,633 - 1,639 (7page)
DOI
10.5370/KIEE.2021.70.11.1633

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Due to the intermittent nature of Renewable Energy Sources (RES) and complexed pattern of time series data, increasing the forecasting accuracy by conventional methods and single-learner based Machine Learning (ML) algorithms is becoming increasingly challenging. Therefore, appropriate combination of ML schemes and data processing techniques is very important to increase the prediction accuracy of RES. This paper presents an intelligent Photovoltaic (PV) forecasting model using an ensemble learner approach based on a combination of bagging, boosting, and stacking algorithms and a Support Vector Regression with Kernel Linear (SVRL) meta-learner. The proposed approach pre-processes time series data using Correlation Matrix Analysis (Corr) and Principal Component Analysis (PCA). In level 0 of the STACK model, seven hybrid models are used as base learners and their individual predictions are used as input for the SVRL meta-learner in level 1. To evaluate the performance of our model, data collected from a 350KW 3rd PV power plant in Gyeongnam, South Korea, were used for simulations, and results were compared with bagging, boosting and bagging-boosting algorithms used separately, and results show higher forecasting accuracy of the proposed algorithm.

목차

Abstract
1. Introduction
2. The Proposed Intelligent PV Power Forecasting Model
3. Performance Evaluation
4. Results and Discussion
5. Conclusion
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-002150213