메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이기준 (한국과학기술원) 류희환 (한국전력연구원) 권태혁 (한국과학기술원)
저널정보
한국터널지하공간학회 한국터널지하공간학회 논문집 한국터널지하공간학회 논문집 제22권 제5호
발행연도
2020.1
수록면
501 - 513 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
TBM 터널굴착에서 실질적으로 지반을 굴착하는 역할을 하는 부분인 커터헤드 설계 시, 커터 관입깊이와 커터 간격을 달리하여 커터절삭 시험 시 최소 비에너지에서의 커터간격을 반영하고 있으나, 암반 조건에 따라서 동일한 커터 관입깊이에서의 최적 커터간격이 달라지기 때문에 최적 커터간격을 설정하는 연구가 활발히 진행되어야 한다. 이러한 비선형적인 커터 관입깊이와 커터 간격의 관계에서 커터 관입깊이에 따른 최적 커터간격을 예측하기 위해 머신러닝 기법인 의사결정나무 기반 랜덤 포레스트 회귀 모델과 SVM 회귀모델을 이용하여 커터 관입깊이에 따른 최적 커터 간격을 예측하였다. 랜덤 포레스트 분석기법은 SVM 분석기법보다 데이터 개수에 더 큰 영향을 받기 때문에 커터 관입깊이에 따른 최적 커터간격비의 예측에 SVM이 더 정확한 예측을 하였다. 데이터가 많이 축적되면 SVM 회귀모델이 보다 더 정확한 예측값으로 커터헤드 설계 시 커터간격을 설정하는데 효율적으로 사용될 수 있을 것으로 판단된다.

목차

등록된 정보가 없습니다.

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0