메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
강준호 (경북대학교) 권기영 (경북대학교)
저널정보
복식문화학회 복식문화연구 복식문화연구 제29권 제3호
발행연도
2021.1
수록면
422 - 436 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The fashion industry analyzes the value of its essence with ecological design and is expressed as an innovative sculpture using digital technology. Accordingly, this study explores ecological images and digital technologies, categorizes types and derives their meanings through analysis of ecological images shown in modern digital fashion. A literature survey was conducted on ecological images and digital technology as a theoretical background. To analyze the expression type and internal meanings of ecological images, designs with ecological formability were selected and analyzed from related journals, books, and internet sites. The finding are as follows: The expression type was first identified as organic curved garment silhouettes of a non-material liquid with digital retouching. Second, ecological fashion design includes structural shape that applies the silhouette of an organism and patterning of the ecosystem. Third, ecosystems consist of interactions between components of an ecosystem that appear in the interactive type. Accordingly, the internal meanings of ecological images in modern digital fashion are: first, digital fashion can encircle the inherent concepts of nature as organic collections of individuals; second, digital ecological images emphasize a sense of community with coexistence and harmony, playing a complementary role; and finally, the images express perceptual features by providing people with transcendent experiences. This study is significant as it analyzes new formative features based on ecological systems in the digital fashion environment, establishes an aesthetic system through internal meanings, and enhances awareness of human-natural relationships.

목차

등록된 정보가 없습니다.

참고문헌 (64)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0