메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
성봉석 (경기대학교) 송우용 (한밭대학교)
저널정보
한일경상학회 한일경상논집 한일경상논집 제90권
발행연도
2021.1
수록면
31 - 41 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: This study is to investigate the effects of government supports on firms’ innovation creation, taking into account interactions with their in-house R&D efforts. Research design, data, and methodology: Panel data for the Korean renewable energy technology manufacturing firms over the 30-year period from 1980 to 2019 are used to test the nexus between the variables, government R&D and non-R&D subsidy, firms’ in-house R&D expenditure, firm size, firm age, and industry competition. Considering the results of various panel framework tests to confirm the characteristics of the data, the empirical model, first-differenced dynamic panel vector autoregressive model, is established, and tested using one-step generalized method of moments estimator. Results: The study demonstrates the presence of dynamic path in firms’ innovation creation, showing that innovation creation in the pervious period significantly affects the enhancement of innovation in the next period. The study also shows that government R&D subsidy does not significantly affect firms’ innovation creation, but has a significant positive effect on firms’ innovation creation, by interacting with firms’ in-house R&D expenditure. Firms’ in-house R&D expenditure and firm size significantly contribute to enhancing their innovation. However, non-R&D subsidy from the government and firm age have significant negative effects on firms’ innovation creation. Implications: Under the situation where few studies has been conducted at the firm level, this study contributes to promoting an understanding of the nexus between government supports and firms’ innovation, especially considering interactions with firms’ in-house innovation efforts.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0