메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박소연 (인하대학교) 김예슬 (인하대학교) 나상일 (국립농업과학원) 박노욱 (인하대학교)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제36권 제5호
발행연도
2020.1
수록면
807 - 821 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
이 연구에서는 작물 모니터링을 위한 시계열 고해상도 영상 구축을 위해 기존 중저해상도 위성영상의 융합을 위해 개발된 대표적인 시공간 융합 모델의 적용성을 평가하였다. 특히 시공간 융합 모델의 원리를 고려하여 입력 영상 pair의 특성 차이에 따른 모델의 예측 성능을 비교하였다. 농경지에서 획득된 시계열 Sentinel-2 영상과 RapidEye 영상의 시공간 융합 실험을 통해 시공간 융합 모델의 예측 성능을 평가하였다. 시공간 융합 모델로는 Spatial and Temporal Adaptive Reflectance Fusion Model(STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model(SPSTFM)과 Flexible Spatiotemporal DAta Fusion(FSDAF) 모델을 적용하였다. 실험 결과, 세 시공간 융합 모델은 예측 오차와 공간 유사도 측면에서 서로 다른 예측 결과를 생성하였다. 그러나 모델 종류와 관계없이, 예측 시기와 영상 pair가 획득된 시기 사이의 시간 차이보다는 예측 시기의 저해상도 영상과 영상 pair의 상관성이 예측 능력 향상에 더 중요한 것으로 나타났다. 또한 작물 모니터링을 위해서는 오차 전파 문제를 완화할 수 있는 식생지수를 시공간 융합의 입력 자료로 사용해야 함을 확인하였다. 이러한 실험 결과는작물 모니터링을 위한 시공간 융합에서 최적의 영상 pair 및 입력 자료 유형의 선택과 개선된 모델 개발의 기초정보로 활용될 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0