메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이성혁 (한국환경정책·평가연구원) 이명진 (한국환경정책·평가연구원)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제36권 제6호
발행연도
2020.1
수록면
1,591 - 1,604 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 고해상도 위성영상을 딥러닝 알고리즘에 적용하여 토지피복을 분류하고 공간객체별 알고리즘의 성능 검증에 대한 연구이다. 이를 Fully Convolutional Network계열의 알고리즘을 선정하였으며, Kompasat-3 위성영상, 토지피복지도 및 임상도를 활용하여 데이터셋을 구축하였다. 구축된 데이터셋을 알고리즘에 적용하여 각각 최적 하이퍼파라미터를 산출하였다. 하이퍼파라미터 최적화 이후 최종 분류를 시행하였으며, 전체 정확도는 DeeplabV3+가 81.7%로 가장 높게 산정되었다. 그러나 분류 항목별로 정확도를 살펴보면, 도로 및 건물에서 SegNet이 가장 우수한 성능을 나타내었으며, 활엽수, 논의 항목에서 U-Net이 가장 높은 정확도를 보였다. DeeplabV3+의 경우 밭과 시설재배지, 초지 등에서 다른 두 모델보다 우수한 성능을 나타내었다. 결과를 통해토지피복 분류를 위해 하나의 알고리즘 적용에 대한 한계점을 확인하였으며, 향후 공간객체별로 적합한 알고리즘을 적용한다면, 높은 품질의 토지피복분류 결과를 산출할 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0