메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제29권 제5호
발행연도
2016.8
수록면
859 - 872 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
초분광 영상 데이터는 픽셀마다 수백 개의 스펙트럼 밴드에 대한 정보가 주어지는 고차원 데이터로, 농업, 식품처리, 광물학, 물리학, 환경학, 지리학 등 광범위한 분야에 활용되고 있다. 그 중 하나는 토지 피복의 분류 문제인데, 이는 자연 재해 예방, 자연 자원 감시, 환경에 대한 정보 수집에 있어서 중요한 문제이다. 하지만 차원의 저주, 시공간적 변동성, 레이블된 데이터의 부족 때문에 토지 피복의 정확한 분류에는 어려움이 따른다. 이 논문에서는 이러한 문제를 해결하기 위해 컨볼루션 신경망에 기반한 새로운 심층 학습 구조를 제안한다. 제안된 구조는 원하는 지점 주변픽셀의 정보를 컨볼루션 신경망을 통해 처리하고, 그 지점의 스펙트럼 정보를 강조하기 위해 컨볼루션 층의 출력과 스펙트럼 정보를 함께 소프트맥스 분류기의 입력으로 사용한다. 이 구조는 추가적인 특징 추출 과정을 필요로 하지 않고, 그래픽 처리 장치 등을 이용한 병렬화가 간편하다는 점에서 기존 방법들보다 유리하다. 실험 결과, 제안된 구조는 기존에 가장 좋은 성능을 보인 분류기와 비슷하거나 더 좋은 분류 정확도를 보여 좋은 일반화 성능을 보이는 것을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001509878