메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ziwen Ke (Shenzhen Institutes of Advanced Chinese Academy of Sciences) Yanjie Zhu (Shenzhen Institutes of Advanced Chinese Academy of Sciences) Dong Liang (Shenzhen Institutes of Advanced Chinese Academy of Sciences)
저널정보
대한자기공명의과학회 Investigative Magnetic Resonance Imaging Investigative Magnetic Resonance Imaging 제24권 제4호
발행연도
2020.1
수록면
214 - 222 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Dynamic magnetic resonance (MR) imaging has generated great research interest, because it can provide both spatial and temporal information for clinical diagnosis. However, slow imaging speed or long scanning time is still a challenge for dynamic MR imaging. Most existing methods reconstruct dynamic MR images from incomplete k -space data under the guidance of compressed sensing (CS) or lowrank theory, which suffer from long iterative reconstruction time. Recently, deep learning has shown great potential in accelerating dynamic MR. Our previous work proposed a dynamic MR imaging method with both k-space and spatial prior knowledge integrated via multi-supervised network training. Nevertheless, there was still some smoothing needed in the reconstructed images at high acceleration. In this work, we propose cascaded residual dense networks for dynamic MR imaging with edge-enhanced loss constraint, dubbed cascaded residual dense networks (CRDN). Specifically, the cascaded residual dense networks fully exploit the hierarchical features from all the convolutional layers with both local and global feature fusion. We further use the higher-degree total variation loss function, which has the edge enhancement properties, for training the networks.

목차

등록된 정보가 없습니다.

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0