메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정재연 (연세대학교) 정지윤 (연세대학교 대학원 보건행정학과) 이해종 (연세대학교)
저널정보
경희대학교 경영연구원 의료경영학연구 의료경영학연구 제15권 제1호
발행연도
2021.1
수록면
65 - 73 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: The purpose of this study is to identify the trends and seasonality of the three major emergency diseases(Acute myocardiac infarction, Stroke, Severe trauma) and to use them to establish efficient resources and evidence-based physicians to predict the number of patients. Methodology: From 2014 to 2018, the number of patients who received emergency medical care for acute myocardial infarction, stroke, and severe trauma (based on ICISS 2008) was predicted using Emergency Medical Status Statistics provided by the National Medical Center. Based on the Autoregressive integrated moving average model, the increasing trend and seasonality of patients by disease were confirmed and the number of patients was predicted. Findings: Since 2014, the number of patients with emergency diseases has steadily increased, with the highest number of patients in the order of Severe trauma (based on ICISS 2008), Stroke, and Acute myocardiac infarction. Patients with cerebrovascular disease, such as Acute myocardiac infarction and stroke, increased rapidly in winter(Oct-Jan), and patients with severe trauma increased mainly in summer or autumn(May-Oct) and number of patients will increase with seasonality. Practical Implications: The number of major emergency patients is expected to increase steadily over time, so it is important to be prepared for this. Therefore, providing emergency care with limited resources is a very important issue, and in order to prepare for the growing elderly population, emergency medical patients, and unpredictable infectious diseases, it is necessary to keep track of the number of patients for each emergency disease.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0