메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오원석 (고려대학교) 배강민 (한국전자통신연구원) 배유석 (한국전자통신연구원)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.48 No.12
발행연도
2021.12
수록면
1,329 - 1,334 (6page)
DOI
10.5626/JOK.2021.48.12.1329

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 여러 사회 문제들을 예방 및 신속하게 대처하기 위해 CCTV가 설치되고 있고 인공지능을 활용해 이를 효과적으로 처리하는 방안이 연구되고 있다. 하지만, CCTV에서 수집한 데이터는 개인정보 침해의 우려가 있어 비식별화 작업 없이는 자유롭게 사회문제 해결을 위한 모델을 연구하는데 사용할 수 없다. 따라서, 본 논문에서는 RDID-GAN을 제안하여 비식별화된 사람의 얼굴을 임의로 복원하여 개인정보 침해의 우려를 줄이고 네트워크 학습에도 부정적인 영향을 주지 않는 효과적인 데이터셋 제작 방안을 제안한다. RDID-GAN은 attention module을 활용해 비식별화된 부분에 집중하여 합당한 결과를 생성할 수 있도록 하였다. 우리는 실험을 통해 해당 모델과 기존의 제안된 image-to-image 변환 모델을 정성적 및 정량적으로 비교하였다.

목차

요약
Abstract
1. Introduction
2. Related Works
3. RDID-GAN
4. Experiments
5. Conclusion
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0