메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Vandana V. Kale (AISSMS’s Institute of Information Technology) Satish T. Hamde (SGGGS Institute of Engineering and Technology) Raghunath S. Holambe (SGGGS Institute of Engineering and Technology)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.9 No.2
발행연도
2019.1
수록면
221 - 231 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Brain disorder recognition has becoming a promising area of study. In reality, some disorders share similar features andsigns, making the task of diagnosis and treatment challenging. This paper presents a rigorous and robust computer aideddiagnosis system for the detection of multiple brain abnormalities which can assist physicians in the diagnosis and treatmentof brain diseases. In this system, we used energy of wavelet sub bands, textural features of gray level co-occurrence matrixand intensity feature of MR brain images. These features are ranked using Wilcoxon test. The composite features are classified using back propagation neural network. Bayesian regulation is adopted to fi nd the optimal weights of neural network. The experimentation is carried out on datasets DS-90 and DS-310 of Harvard Medical School. To enhance the generalizationcapability of the network, fi vefold stratifi ed cross validation technique is used. The proposed system yields multi classdisease classifi cation accuracy of 100% in diff erentiating 90 MR brain images into 18 classes and 97.81% in diff erentiating310 MR brain images into 6 classes. The experimental results reveal that the composite features along with BPNN classifier create a competent and reliable system for the identifi cation of multiple brain disorders which can be used in clinicalapplications. The Wilcoxon test outcome demonstrates that standard deviation feature along with energies of approximateand vertical sub bands of level 7 contribute the most in achieving enhanced multi class classifi cation performance results.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0