메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Debnath Bhattacharyya (Koneru Lakshmaih Education Foundation) Eali Stephen Neal Joshua (Lincoln University College) N.Thirupathi Rao (Vignan’s Institute of Information Technology)
저널정보
한국컴퓨터게임학회 한국컴퓨터게임학회논문지 한국컴퓨터게임학회논문지 제34권 제2호
발행연도
2021.1
수록면
69 - 81 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the following years, technology has progressed in so many ways that it has provided the cyber society with a resource that only computers can excel at, such as the art of counterfeit of media, which was before unavailable. Deepfakes are a term used to describe this kind of deception. The majority of well-documented Deep Fakes are produced using Generative Adversarial Network (GAN) Models, which are essentially two distinct Machine Learning Models that perform the roles of attack and defence. These models create and identify deepfakes until they reach a point where the morphing no longer detects the deepfakes anymore. Using this algorithm/model, it is possible to discover and create new media that has a similar demographic to the training set, resulting in the development of the ideal Deep Fake media. Because the alterations are carried out utilising advanced characteristics, they cannot be seen with the human eye. However, it is completely feasible to develop an algorithm that can automatically identify this kind of tampering carried out via the internet. This not only enables us to broaden the scope of our search beyond a single media item, but also beyond a large library of mixed media. The more it learns, the better it becomes as artificial intelligence takes over in full force with automation. In order to create better deep fakes, new models are being developed all the time, making it more difficult to distinguish between genuine and morphing material.

목차

등록된 정보가 없습니다.

참고문헌 (46)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0