메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
도기윤 (Korea Institute of Radiological & Medical Sciences Korea Cancer Center Hospital) 신의섭 (한국원자력의학원) 전병호 (한국원자력의학원) 조상식 (한국원자력의학원) 문선미 (한국원자력의학원)
저널정보
대한대장항문학회 Annals of Coloproctology Annals of Coloproctolgy Vol.37 No.2
발행연도
2021.1
수록면
94 - 100 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose This study was conducted to evaluate the effectiveness of primary tumor resection (PTR) in asymptomatic colorectal cancer (CRC) patients with unresectable metastases using the inverse probability of treatment weighting (IPTW) method to minimize selection bias. Methods We selected 146 patients diagnosed with stage IV CRC with unresectable metastasis between 2001 and 2018 from our institutional database. In a multivariate logistic regression model using the patients’ baseline covariates associated with PTR, we applied the IPTW method based on a propensity score and performed a weighted Cox proportional regression analysis to estimate survival according to PTR. Results Upfront PTR was performed in 98 patients, and no significant differences in baseline factors were detected. The upweighted median survival of the PTR group was 18 months and that of the non-PTR group was 15 months (P = 0.15). After applying the IPTW, the PTR was still insignificant in the univariate Cox regression (hazard ratio [HR], 0.26; 95% confidence interval [CI], 0.5–1.21). However, in the multivariate weighted Cox regression with adjustment for other covariates, the PTR showed a significantly decreased risk of cancer-related death (HR, 0.61; 95% CI, 0.40–0.94). Conclusion In this study, we showed that asymptomatic CRC patients with unresectable metastases could gain a survival benefit from upfront PTR by analysis with the IPTW method. However, randomized controlled trials are mandatory.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0