메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김형선 (한국화학연구원부설 안전성평가연구소)
저널정보
한국뇌신경과학회 Experimental Neurobiology Experimental Neurobiology Vol.28 No.3
발행연도
2019.1
수록면
425 - 435 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The brain grows with age in non-human primates (NHPs). Therefore, atlas-based stereotactic coordinates cannot be used directly to target subcortical structures if the size of the animal’s brain differs from that used in the stereotactic atlas. Furthermore, growth is non-uniform across different cortical regions, making it difficult to simply apply a single brain-expansion ratio. We determined the skull reference lines that best reflect changes in brain size along the X, Y, and Z axes and plotted the changes in reference-line length against the changes in body weight. The skull reference lines had a linear relationship with body weight. However, comparison of skull reference lines with body weight confirmed the non-uniform skull growth during postnatal development, with skull growth more prominent in the X and Y axes than the Z axis. Comparing the differences between the atlas-based lengths and those calculated empirically from plot-based linear fits, we created craniometric indices that can be used to modify stereotactic coordinates along all axes. We verified the accuracy of the corrected stereotactic targeting by infusing dye into internal capsule in euthanized and preserved NHP brains. Our axis-specific, craniometric-index-adjusted stereotactic targeting enabled us to correct for targeting errors arising from differences in brain size. Histological verification showed that the method was accurate to within 1 mm. Craniometric index-adjusted targeting is a simple and relatively accurate method that can be used for NHP stereotactic surgery in the general laboratory, without the need for high-resolution imaging.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0