메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chen Pin-Chuan (Department of Mechanical Engineering National Taiwan University of Science and Technology) Chou Ching Chan (Department of Mechanical Engineering National Taiwan University of Science and Technology) Chiang Chung Hsuan (Department of Mechanical Engineering National Taiwan University of Science and Technology)
저널정보
한국바이오칩학회 BioChip Journal BioChip Journal Vol.15 No.2
발행연도
2021.1
수록면
144 - 151 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Our major objective in this study was to create complex, three-dimensional, and fully transparent polydimethylsiloxane(PDMS) fluidic device by revising the previously reported fabrication process and to systematically study the influence of each fabrication step to the final PDMS fluidic device. The current fabrication process adopted fused deposition modeling (FDM) 3D printers to create molds of acrylonitrile butadiene styrene (ABS) for use in PDMS casting, then solvent solution was used to dissolve the ABS mold embedded inside the PDMS device and a transparent PDMS device was created for experiments. However, it is quite challenging to ensure the complete removal of ABS molds inside the long, curly, and narrow channels. Ultrasonication was added into our fabrication process to improve the efficacy of dissolving ABS molds inside the channels and conclusions can be derived from these experiments: (1) ultrasonication-assisted dissolution is an effective approach to the complete removal of ABS molds embedded inside these long, curly, and narrow channels (for example, the mixer demonstrated herein had a diameter of 2 mm and length of 162 mm); (2) the application of solvent vapor polishing to 3D-printed molds is highly effective in reducing the surface roughness of the molds (8 ~ 10 μm before polishing to 038 ~ 0.5 μm after polishing) and important to preserve the transparency of the resulting PDMS devices; (3) ensuring the circulation of fresh solvent solution is critical to shorten the dissolution process.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0