메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김정현 (인하대학교) 정창훈 (인하대학교) 양대헌 (인하대학교) 이경희 (수원대학교)
저널정보
한국차세대컴퓨팅학회 한국차세대컴퓨팅학회 논문지 한국차세대컴퓨팅학회 논문지 제15권 제5호
발행연도
2019.1
수록면
7 - 19 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
랜섬웨어(ransomware)는 사용자 데스크톱의 파일들을 암호화한 뒤, 복호화 비용을 요구하는 악성 프로그램이다. 랜섬웨어 공격의 빈도와 피해금액은 매년 증가하고 있기 때문에 랜섬웨어 예방과 탐지 및 복구 시스템이 필요하다. 본 논문에서는 Baek 등이 제안한 랜섬웨어 탐지 알고리즘인 SSD-Insider가 덮어쓰기 검사를 위해 사용하는 해시테이블을 블룸 필터로 교체한 AdvanSSD-Insider 알고리즘을 제안한다. 실험 결과 AdvanSSD-Insider 알고리즘은 SSD-Insider 알고리즘에 비해 메모리 사용량이 최대 90%, 수행시간이 최대 77% 감소하였고 동일한 탐지 정확도를 얻었다. 또한 SSD-Insider 알고리즘과 동일한 조건의 메모리 사용량으로 AdvanSSD-Insider 알고리즘은 10배 더 긴 시간을 관찰할 수 있으며, 이를 통해 기존에 탐지하기 어려웠던 랜섬웨어에 대해 탐지 정확도가 증가하는 결과를 얻었다.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0