메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박수연 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제2호
발행연도
2022.4
수록면
267 - 277 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 클라우드 및 원격 근무 환경의 비중이 증가함에 따라 다양한 정보보안 사고들이 발생하고 있다. 조직의 내부자가 원격 접속으로 기밀 자료에 접근하여 유출을 시도하는 사례가 발생하는 등 내부자 위협이 주요 이슈로 떠오르게 되었다. 이에 따라 내부자 위협을 탐지하기 위해 기계학습 기반의 방법들이 제안되고 있다. 하지만, 기존의 내부자 위협을 탐지하는 기계학습 기반의 방법들은 편향 및 분산 문제와 같이 예측 정확도와 관련된 중요한 요소를 고려하지 않았으며 이에 따라 제한된 성능을 보인다는 한계가 있다. 본 논문에서는 편향 및 분산을 고려하는 부스팅 유형의 앙상블 학습 알고리즘들을 사용하여 악의적인 내부자 탐지 성능을 확인하고 이에 대한 면밀한 분석을 수행하며, 데이터셋의 불균형까지도 고려하여 최종 결과를 판단한다. 앙상블 학습을 이용한 실험을 통해 기존의 단일 학습모델에 기반한 방법에서 나아가, 편향-분산 트레이드오프를 함께 고려하며 유사하거나 보다 높은 정확도를 달성함을 보인다. 실험 결과에 따르면 배깅과 부스팅 방법을 사용한 앙상블 학습은 98% 이상의 정확도를 보였고, 이는 사용된 단일 학습 모델의 평균 정확도와 비교하면 악의적인 내부자 탐지 성능을 5.62% 향상시킨다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 악의적인 내부자 탐지를 위한 앙상블 학습
IV. 실험 및 평가
V. 결론 및 향후 연구 방향
References

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001127708