메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yining Mu (Changchun University of Science and Technology) Tuo Zhang (Changchun University of Science and Technology) Tianqi Chen (Changchun University of Science and Technology) Fanqi Tang (Changchun University of Science and Technology) Jikai Yang (Changchun University of Science and Technology) Chunyang Liu (Changchun University of Science and Technology) Zhangxiaoxiong Chen (Changchun University of Science and Technology) Yiming Zhao (Changchun University of Science and Technology) Peng Du (Changchun University of Science and Technology) Haibo Fan (Changchun University of Science and Technology) Yan Zhu (Changchun University of Science and Technology) Guozhen Liu (Changchun University of Science and Technology) Ping Li (Changchun University of Finance and Economics)
저널정보
성균관대학교 성균나노과학기술원 NANO NANO Vol.15 No.3
발행연도
2020.1
수록면
32 - 39 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In recent years, all inorganic bismuth lead-halide perovskite nanocrystals [CsPbX3 (X=Cl, Br, I)] have received extensive attention due to their high performance in fluorescence quantum yield, narrow emission spectrum, and adjustable emission range. However, the disadvantages of high cost and poor stability have greatly limited the development prospects of the material. Here, in order to develop a perovskite quantum dot lasing cavity with high chemical stability, high quality factor and low fabrication cost, we have successfully fabricated a 3D random cavity device based on porous silicon/TiO2 nanowires. A TiO2 nanowire is grown on the porous silicon to form a 3D resonant cavity, and a perovskite quantum dot is spin-coated on the surface of the 3D resonant cavity to form a novel 3D complex film. The novel structure enhances the chemical stability and lasing quality factor of the resonant cavity while the fluorescence generated by the large quantum dots in the spatial interference structure constitutes the feedback loop, which will provide favorable support for the development of information optics.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0