메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
권성재 (대진대학교) 정목근 (대진대학교)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.7 No.1
발행연도
2017.1
수록면
31 - 43 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper estimates the side lobe levels fromthe received echo data, and proposes and compares threetypes of filters that can be used to suppress them in anultrasound image. Ultrasound echo signals from the offaxisscatterers can be modeled as a sinusoidal wave whosespatial frequency in the lateral direction of a transducerarray varies as a function of the incident angle. Thereceived channel data waveform due to side lobes have aspatial frequency of an integer plus a half. Doubling thelength of the channel data by appending zeros and takingthe discrete Fourier transform of the elongated data makesthe spatial frequency of the channel data due to side lobesbecome an integer. Thus, it is possible to estimate thecomplex amplitude of the side lobes. Adding together allthe channel data of the estimated side lobes, we can obtainthe side lobe levels present in ultrasound field characteristics. We define the summed value as a quality factor thatis used as a parameter of side lobe suppression filters. Computer simulations as well as experiments on wires in awater tank and a cyst phantom show that the proposedfilters are very effective in reducing side lobe levels andthat the amount of computation is smaller than that of theminimum variance beamforming method while showingcomparable performance. A method of estimating andsuppressing side lobes in an ultrasound image is presented,and the performance of the proposed filters is found to beviable against the conventional B-mode imaging andminimum variance beamforming methods.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0