메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sajid Iqbal (University of Engineering and Technology) M. Usman Ghani Khan (University of Engineering and Technology) Tanzila Saba (Prince Sultan University) Amjad Rehman (Al-Yamamah University)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.8 No.1
발행연도
2018.1
수록면
5 - 28 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Medical imaging plays an integral role in theidentification, segmentation, and classification of braintumors. The invention of MRI has opened new horizons forbrain-related research. Recently, researchers have shiftedtheir focus towards applying digital image processingtechniques to extract, analyze and categorize brain tumorsfrom MRI. Categorization of brain tumors is defined in ahierarchical way moving from major to minor ones. Aplethora of work could be seen in literature related to theclassification of brain tumors in categories such as benignand malignant. However, there are only a few worksreported on the multiclass classification of brain imageswhere each part of the image containing tumor is taggedwith major and minor categories. The precise classificationis difficult to achieve due to ambiguities in images andoverlapping characteristics of different type of tumors. Inthe current study, a comprehensive review of recentresearch on brain tumors multiclass classification usingMRI is provided. These multiclass classification studies arecategorized into two major groups: XX and YY and eachgroup are further divided into three sub-groups. A set ofcommon parameters from the reviewed works is extractedand compared to highlight the merits and demerits ofindividual works. Based on our analysis, we provide a setof recommendations for researchers and professionalsworking in the area of brain tumors classification.

목차

등록된 정보가 없습니다.

참고문헌 (106)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0