메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
양승원 (백석대학교) 김태형 (경희대학교) 최현민 (광주대학교)
저널정보
한국운동재활학회 Journal of exercise rehabilitation Journal of exercise rehabilitation Vol.14 No.4
발행연도
2018.1
수록면
621 - 627 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study is to examine the validity and reproducibility of impedance body fat measurement devices measuring the body com-position of Korean male and female adults using three bioelectrical im-pedance analyzers. We compared two methods for evaluating body composition: dual energy X-ray absorptiometry (DEXA), and bioelectri-cal impedance analysis (BIA). Subjects were 200 healthy adult Korean males and females whose mean±standard deviation (range) age, standing height, body weight, and body mass index (BMI) were 44.1±14.5 years, 172.8±7.4 cm, 76.0±12.8 kg, and 25.4±3.3 kg/m2, and 44.5±14.7 years, 158.7±5.8 cm, 58.3±8.3 kg, and 23.2±3.0 kg/m2, re-spectively. As a result, first of all, the reproducibility of the bioelectrical impedance analyzer had very high coefficients at r=0.998, r=0.997 be-tween men and women, respectively. The correlation coefficients among three comparisons for lean body mass (LBM) were provided the following coefficients: r=0.951 for DEXA vs. ACCUNIQ BC720, r=0.950 for DEXA vs. ACCUNIQ BC360, and r=0.946 for DEXA vs. ACCUNIQ BC380 in men. In the results for women, they also had the very high fol-lowing coefficients: r=0.956 for DEXA vs. ACCUNIQ BC720, r=0.946 for DEXA vs. ACCUNIQ BC360, and r=0.957 for DEXA vs. ACCUNIQ BC380 in LBM. In conclusion, this research showed a higher correlation in terms of accuracy compared to existing BIA-based body composition measurement techniques, and the accuracy of LBM was improved with high correlation coefficients through the algorithm that was improved using the multifrequency BIA method in the ACCUNIQ BC products.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0