메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
명준표 (가톨릭대학교) 김형수 (건국대학교) 이건세 (건국대학교 의과대학 예방의학교실) 장성훈 (건국대학교)
저널정보
대한의사협회 대한의사협회지 대한의사협회지 제61권 제8호
발행연도
2018.1
수록면
466 - 473 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The main role of industrial accident compensation insurance is to protect injured workers and their families by providing various benefits. If a certain disease occurs due to work, the worker must prove the causal relationship between the work and the disease, although it is not easy for injured workers to do so. The epidemiological approach to causality is based on a comparison of the incidence rate in exposed and non-exposed groups. Recently, some arguments have been made regarding the application of epidemiological causality in litigation related to tobacco and some environmental-related diseases. The 3 main points of dispute are as follows: 1) the distinction between specific and non-specific diseases and causal inference, 2) the relative risk and the attributable fraction of the causative factor for the related disease, and 3) the application of population-level epidemiological study results to individual causation. Until now, the main approach to the causality of occupational diseases has been proximate causal relationships because of the practical difficulties in applying epidemiological causality to all events. As coverage under the Industrial Accident Compensation Insurance Act expands, the application of epidemiological causality must be considered, as well as the expansion of applicable occupational diseases. Moreover, doing that could provide enough evidence for managers and workers to take steps to prevent occupational disease. The safety net provided by industrial accident compensation insurance for protecting injured workers needs to be implemented on the basis of scientific evidence.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0