메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Nam Anh Dao (Electric Power University) Hai Minh Nguyen (Hanoi University of Science and Technology) Khanh Tung Nguyen (Electric Power University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.10 No.6
발행연도
2021.12
수록면
469 - 476 (8page)
DOI
10.5573/IEIESPC.2021.10.6.469

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We present a method for the computational problem of mining for the energy-consumption patterns of apartments in residential buildings. We show a consistent scheme for how to apply data mining in order to discover partitions that constitute electrical consumption. The method is geared to stabilize robust learning and prediction by combining cluster analysis of time-series data and iterative gradient boosting from auto-regression in learning. Together with data preparation, such as the analysis of time-series patterns and well-formulated features, clustering methods can be used to specify group-based energy consumption data. Hence, we propose to use k-Means and agglomerative clustering, which adapt to the time-series data for grouped apartments. Then, robust gradient boosting is implemented to predict the levels of energy consumption for each group. Finally, prediction of energy consumption for the whole building is estimated. Our experimental evaluation demonstrates that the method allows significantly fewer errors than previous techniques.

목차

Abstract
1. Introduction
2. Related Work
3. The Method
4. Experimental Results
5. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0