메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김도완 (숭실대학교) 최대선 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제31권 제6호
발행연도
2021.12
수록면
1,279 - 1,290 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
차량 기술이 성장하면서 운전자의 개입이 필요 없는 자율주행까지 발전하였고, 이에 따라 차량 내부 네트워크인 CAN 보안도 중요해졌다. CAN은 해킹 공격에 취약점을 보이는데, 이러한 공격을 탐지하기 위해 기계학습 기반 IDS가 도입된다. 하지만 기계학습은 높은 정확도에도 불구하고 적대적 예제에 취약한 모습을 보여주었다. 본 논문에서는 IDS를 회피할 수 있도록 feature에 잡음을 추가하고 또한 실제 차량의 physical attack을 위한 feature 선택 및 패킷화를 진행하여 IDS를 회피하고 실제 차량에도 공격할 수 있도록 적대적 CAN frame 생성방법을 제안한다. 모든 feature 변조 실험부터 feature 선택 후 변조 실험, 패킷화 이후 전처리하여 IDS 회피실험을 진행하여 생성한 적대적 CAN frame이 IDS를 얼마나 회피하는지 확인한다.

목차

요약
ABSTRACT
I. 서론
II. 배경 지식 및 관련 연구
III. CAN 적대적 예제 생성
II. GAN 기반 적대적 CAN 패킷 생성 실험
III. 패킷 프레임 생성
IV. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-000067076