메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장진혁 (숭실대학교) 류권상 (숭실대학교) 최대선 (숭실대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제31권 제5호
발행연도
2021.10
수록면
987 - 999 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
최근 데이터로 인한 개인정보 침해로 인해 연합학습이 이슈화되고 있다. 연합학습은 학습데이터를 요구하지 않기 때문에 프라이버시 침해로부터 안전하다. 이로 인해 분산된 디바이스, 데이터를 활용하여 효율을 내기 위한 응용 방법에 대한 연구들이 진행되고 있다. 그러나 연합학습과정에서 전송되는 그래디언트로부터 학습데이터를 복원하는 재복원공격에 대한 연구가 진행됨에 따라 더는 연합학습도 안전하다고 볼 수 없다. 본 논문은 다양한 데이터 상황에서 데이터 복원 공격이 얼마나 잘되는지 수치적, 시각적으로 확인하는 것이다. 데이터가 1개만 존재할 때부터 크게는 클래스 안에 데이터가 여러 개 분포해 있을 때로 나누어 재복원공격이 얼마나 되는지 확인을 위해 MSE, LOSS, PSNR, SSIM인 평가지표로 MNIST 데이터를 활용해 수치로 확인한다. 알게 된 사실로 클래스와 데이터가 많아 질수록 MSE, LOSS,이 높아지고 PSNR, SSIM이 낮아져 복원성능이 떨어지지만 몇 개의 복원된 이미지로 충분히 프라이버시 침해가 가능하다는 것을 확인할 수 있다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 배경 및 관련 연구
Ⅲ. 상황별 데이터 재복원공격
Ⅳ. 데이터 상황별 재복원공격 분석 실험
Ⅴ. PIL 필터링 기법
Ⅵ.Discussion
Ⅶ. 결론
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0