메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조선근 (스마트마인드) 박인두 (스마트마인드) 장주희 (스마트마인드) 오원욱 (스마트마인드)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제41권 제6호
발행연도
2021.12
수록면
51 - 57 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Currently, investment is being made in renewable energy for the transition to a low-carbon economy and society, and interest in solar energy is also increasing. In addition to the technological development of solar cells and photovoltaic (PV) modules, research in the field of convergence with artificial intelligence technology is being actively conducted. Defects occurring in the manufacturing process of solar cells and modules can be detected through electroluminescence (EL) measurements. In this study, we propose an artificial intelligence technology that can automatically detect defects in cells and modules in real time using EL image data of solar cells and modules in the manufacturing process. For EL defect detection, we propose an algorithm with high suitability in terms of speed and accuracy by applying deep learning-based object detection models and comparing and evaluating detection performance. In the case of the YOLO (you only look once) algorithm, which belongs to a one-step detector, it learns In the case of the YOLO (you only look once) algorithm, which belongs to a one-step detector, it learns through an optimization process to find information about the defect and the location information of the corresponding failure in the form of a bounding box, and then detects the failure based on this information. The introduction of a deep learning-based defect detection model in the manufacturing process is expected to reduce the time required for defect detection by solar cell and PV module manufacturers and contribute to productivity improvement.

목차

Abstract
1. 서론
2. 연구방법
3. 결과
4. 결론
REFERENCES

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-563-000063976