메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Rustem Adamovich Shichiyakh (Kuban State Agrarian University) Olga Yu Voronkova (Altai State University) Inara K. Shakhbanova (Daghestan State Technical University) Chulpan Ya Shafranskaya (Kazan Innovative University) Svetlana V. Titova (Kazan Innovative University) Andrey L. Poltarykhin (Plekhanov Russian University of Economics)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.20 No.4
발행연도
2021.12
수록면
637 - 644 (8page)
DOI
10.7232/iems.2021.20.4.637

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With regard to environmental concerns, energy consumption is another major issue in high-performance systems. This paper examines the scheduling problem in a multi-machine system where the machine"s engine speed can be adjusted over an interrupt interval. Adjusting the CPU by sacrificing the completion time delivers flexibility to minimize the cost of electricity in terms of energy savings. Traditional research focuses on machine planning on assignment of work and sequencing to optimize specific target functions that are defined to complete work time. In the above circumstances, the purpose of the study is to assign the works to machines, as well as to determine the sequence of tasks and the speed of each machine to minimize the objective function, including to minimize tardiness penalty and energy cost with sequence dependent set-up times. We proposed two fragmentary algorithms based on the PSO and Genetic Algorithm (GA) algorithms. In this paper, the application of these two algorithms for minimizing tardiness penalty and energy cost with sequence dependent set-up times is examined. Finally, the algorithms are compared and the results are compared.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. STATEMENT OF THE PROBLEM & MODELING
4. RESULTS & CONCLUSION
REFERENCES

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-530-000124226