메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Bashar Yaser Almansour (The World Islamic Sciences and Education University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.20 No.4
발행연도
2021.12
수록면
795 - 807 (13page)
DOI
10.7232/iems.2021.20.4.795

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The pandemic of Covid-19 has affected the equity market to become highly volatile. This study aims to investigate the Autoregressive Conditional Heteroskedasticity (ARCH) family models in forecasting the Dow Jones conventional and Islamic indices, and to examine the impact of the Covid-19 pandemic on both the Dow Jones conventional and Islamic indices. This study employs a time series of daily data over the period 2013 to 2021. The results show that the GARCH, TGARCH and EGARCH were the best models in predicting the Dow Jones indices. However, when the data is divided into sub-period, it is found that only TGARCH is the best model in forecasting Dow Jones indices. Interestingly, the findings show that bad and good news can significantly affect the conditional volatility of all Dow Jones conventional and Islamic indices returns. The findings of this study conclude that securities regulation department in the United States of America had captured the influence of corona pandemic. This is mainly because of the strong relationship between the fluctuation of the stock prices and the pandemic itself. Accordingly, the international investors should pay attention to prediction models which offers to utilize these results to adjust their investment counter position for the future volatility and employ hedging strategies during the corona pandemic.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. RESEARCH METHODOLOGY
4. EMPIRICAL RESULTS
5. CONCLUSION AND RECOMMENDATIONS
REFERENCES

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-530-000124382