메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kohei Otani (Kumamoto University) Teruo Yamaguchi (Kumamoto University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
336 - 341 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, we propose a method of observing the velocity of a target object using the spatio-temporal differentiation method which has lower calculation cost. Estimating and recognizing the position and velocity of the target object by motion image processing using a Kalman filter. However, while the spatio-temporal differentiation method can observe the velocity at low cost, it has a feature that when the velocity of the target object is large, the error included in the observed value becomes large. Therefore, the velocity of the target object is observed by the spatio-temporal differentiation method which introduced the compensation method. In the compensation method, how to determine the compensation amount is important, but by determining the amount based on the prediction of the Kalman filter, the error included in the observation value can be reduced. In this way, the recognition of the target object by the Kalman filter is facilitated by using the observed value of velocity, and the error of the observed value can be reduced by determining the compensation amount using the predicted value by the Kalman filter. It is expected that more stable results will be obtained than the observation by spatio-temporal differentiation method. At that time, the execution result changes by changing the variance value of the Kalman filter. Therefore, in this study, we examine how to set the covariance matrix of the Kalman filter.

목차

Abstract
1. INTRODUCTION
2. THEORY AND METHOD
3. EXPERIMENT AND RESULTS
4. CONCLUDING REMARKS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0