메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Supannada Chotipant (King Mongkut’s Institute of Technology Ladkrabang) Pornsuree Jamsri (King Mongkut’s Institute of Technology Ladkrabang)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
359 - 364 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Elderly people are dealing with falling down on a daily basis. This incident can happen anytime at any place. There is high risk of falling not only the elder but also the caregiver. Although there are numbers of applications and devices in the market for the user, the cutting-edge technology as a machine learning-based algorithm can increase effectiveness of fall detection model into device’s effectiveness. The available technology is embedded accelerometer and gyroscope sensor into a smartphone provide benefit dataset. These data can be used for reducing and managing serious injury and caregiver can assist on time. The leverage performance of a Smart Steps application by including the essence of machine learning algorithm and 5-fold cross validation rises accuracy in fall detection. Thus, this paper proposed a novel method of 4 binary classification--Decision Tree, SVM, K-Nearest Neighbors, and Gradient Boosting. The focusing on acceleration magnitude, angular velocity magnitude, and difference between pre-current, current-post values are taken into account in the study. The opened dataset, MobiFall, are split into 2 groups 1) train group 80% and 2) test group 20% for gathering effectiveness result. The model’s assessment measures in 4-dimension 1) accuracy, 2) precision, 3) recall and, 4) F1-Score. The results demonstrates increasing values that 95.65% of accuracy, 91.20% precision, 90.86% recall and, 91.03% F1-Score. The fall detection of the study can conclude that the machine learning-based algorithm offers more accuracy and effectively than threshold-based algorithm.

목차

Abstract
1. INTRODUCTION
II. RELATED WORK
III. SYSTEM DESGIN
IV. FALL DETECTION METHODOLOGY
V. EXPERIMENTS
VI. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0