메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ho Dong Lee (Seoul National University) Kunpeng Guo (Siemens Process Systems Engineering Limited) Lorena F.S. Souza (Siemens Process Systems Engineering Limited) Jong Min Lee (Seoul National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
376 - 381 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Digital transformation utilizing the digital twin of a process can provide enormous benefit. It is possible to effectively monitor the process operation and control the process erroneous behavior by using the high-fidelity digital twin. In addition, the better operational strategy can be identified through process optimization from the digital twin. To perform such activities about the huge scale of process, we established a digital platform that allows the operational personnel to efficiently monitor the operation condition with the useful information such as economics and representative indexes that can be obtained from the digital twin. A chemical plant utility system that has a goal to supply the process utilities such as steam and power stably was used as the target process. As exclusive features of the project for the utility system the platform suggests the multi-level optimization results in terms of the process specifications as well as the trends of the key performance indicators of the process. It also provides a tool, what-if analysis, to simulate the hypothetical situation in preparation for the possible change of the external factors. Using the digital process twin technology, we were able to suggest the capability to save the cost and present the high-level information that cannot be utilized from the process data alone.

목차

Abstract
1. INTRODUCTION
2. PRELIMINARIES
3. CASE STUDY: CHEMICAL PLANT UTILITY SYSTEM
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0