메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sumaira Manzoor (Sungkyunkwan University) Eun-Jin Kim (Sungkyunkwan University) Gun-Gyo In (Sungkyunkwan University) Tae-Yong Kuc (Sungkyunkwan University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
890 - 893 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The performance evaluation of an AI network model is the important part for building an effective solution before its deployment in real-world on the robot. In our study, we have implemented YOLOv3-tiny and YOLOv4-tiny darknet based frameworks for performance evaluation of the elevator button recognition task and tested both variants on image and video datasets. The objective of our study is two-fold: First, to overcome the limitation of elevator buttons dataset by creating new dataset and increasing its quantity without compromising the quality; Second, to provide a comparative analysis through experimental results and the performance evaluation of both detectors using four machine learning metrics. The purpose of our work is to assist the researchers and developers in decision making of suitable detector selection for deployment in the elevator robot towards button recognition application. The results show that YOLOv4-tiny outperforms YOLOv3-tiny with an overall accuracy of 98.60% compared to 97.91% at 0.5 IoU.

목차

Abstract
1. INTRODUCTION
2. RELATEDWORK
3. DATASET
4. RESULTS
5. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0