메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Redhwan Algabri (Sungkyunkwan University) Mun-Taek Choi (Sungkyunkwan University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,000 - 1,006 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Tracking a specific person in environments with non-uniform illumination is a difficult task for mobile robots. Image information such as color is essential to identify a target person. However, the information is not reliable under severe illumination changes unless the system can accommodate these changes over time. In this paper, we propose a robust identifier that has been combined with a deep learning technique to accommodate varying illumination in the ambient lighting of a scene. Moreover, an enhanced online update strategy for the person identification model is used to deal with the challenge of drifting the target person’s appearance changes during tracking. Using the proposed method, the system achieves a successfully tracked rate above 90% on real-world video sequences in which variations in illumination are dominant. We confirmed the effectiveness of the proposed method through target-following experiments using five different clothing colors in a real indoor environment where the lighting conditions change extremely.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. RESULTS AND DISCUSSION
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0