메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Marzana. Khatun (Kempten University of Applied Sciences) Gabriel Batista. Caldeira (Hochschule Furtwagen) Rolf. Jung (Kempten University of Applied Sciences) Michael. Glaß (University Ulm)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,570 - 1,575 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Modeling and simulation techniques are a necessity to solve the problems and aid the automated driving verification and validation process. The scenario-based analysis like hazard analysis and risk assessment is counting as an essential method not only to understand the system behavior in the field of an automated vehicle but also to reduce the development and communication gaps. In terms of functional safety and safety of the intended functionality the number of hazardous scenarios increases that need to be reduced. Scenario reduction is a challenge that yet needs to be solved. Therefore, this paper proposes a probability approach like the Monte Carlo method at the logical scenario level. Additionally, the safety-critical vehicle parameter range has been optimized based on collision detection. Furthermore, the result realized by the Monte Carlo experiment has been used to model the concrete scenarios in CarMaker in a time-efficient manner. The approach of modeling for a specific function like transverse guidance can be utilized to build a full scenario database for the highly automated driving vehicle.

목차

Abstract
1. INTRODUCTION
2. SCENARIO-BASED ANALYSIS
3. MONTE CARLO EXPERIMENT
4. MODELING AND SCENARIO SIMULATION
3. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0