메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Younggeol Cho (Korea Advanced Institute of Science and Technology (KAIST)) Pyungkang Kim (Samsung Electronics) Kyung-Soo Kim (Korea Advanced Institute of Science and Technology (KAIST))
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,917 - 1,921 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The proposed model is capable of estimating multiple degrees of freedom wrist force simultaneously and proportionally. In the case of previous studies, it has been developed from a method of performing only a set motion based on pattern recognition, and studies that proportionally estimate wrist and finger strength are in progress. In this context, the wrist force was estimated using a method that modified the structure of the autoencoder, which is one of the artificial neural networks with high intention estimation performance compared to previous studies. This study was conducted with 2 degrees of freedom (Wrist flexion, Wrist extension, Ulnar deviation, Radial deviation) of the wrist. The proposed model showed high model accuracy and independence between degrees of freedom compared to similar previous models. Also, as a result of an online simulation test that reflects the real-time prosthetic control situation, 5 out of 6 performance indicators showed higher performance than the comparative model. As a result of this study, it was possible to infer that the accuracy of the model and the securing of independence between the degrees of freedom have a great effect on the control of the actual prosthetic arm including humans.

목차

Abstract
1. INTRODUCTION
2. METHODOLOGY
3. EXPERIMENTAL DETAILS
4. RESULTS
5. DISCUSSIONS
6. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0