메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hiromu Ikeda (Kyushu Institute of Technology) Guangxu Li (Tiangong University) Tohru Kamiya (Kyushu Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
2,059 - 2,063 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the explosion of amount of low cost satellites, satellite images have been widely used for many non-military applications, such as agriculture, landscape, and recognition of environment. Improving the image resolution to mine useful information becomes one of the immediate problems. Therefore, it is expected to improve the recognition accuracy by increasing the resolution of satellite images. Recently, deep learning technique has been proposed to increase the resolution of images. However it requires a large number of learning parameters, which results in huge computational cost. To overcome this problem, we develop a new deep learning model based on ghost module to reduce the parameters while maintaining the quality of results. We utilized Google Earth Pro satellite imagery for the network training and testing. Comparing to the classical convolutional neural network module based methods, the number of parameters used in our model was reduced 49.31% but keeping the same level of Peak Signal - to - Noise Ratio (24.1578) and Structural Similarity (0.7174).

목차

Abstract
1. INTRODUCTION
2. METHOD
3. EXPERIMENT
4. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0