메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jialiang Liu (Chongqing Jiaotong University) Yu Jin (Chongqing Jiaotong University) Yujie Zhu (Chongqing Jiaotong University) Jinyang Li (Chongqing Jiaotong University) Xuguang Zhang (Chongqing Jianzhu College) Chao Tao (Chongqing Jiaotong University)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.16 No.1
발행연도
2022.1
수록면
23 - 34 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
High-pressure water jet crushing concrete has significant advantages in safety, quality and environmental protection, which has a broad application prospect in the maintenance and reconstruction of concrete building. Nevertheless, it still has some problems such as high threshold pump pressure and large specific energy consumption. Water jet breaking concrete with liquid nitrogen (LN₂) cold shock assistance combined with the low-temperature-induced fracturing and hydraulic impact can effectively reduce the working pressure of water jet and improve the energy utilization rate. On account of the unclear cracking characteristics and mechanism of concrete under the LN₂ cold shock, this research carried out the following systematic research focusing on the key scientific issues above based on mechanical tests, scanning electron microscopy (SEM), and nuclear magnetic resonance (NMR). Results indicate that the total mass of concrete exfoliated blocks after compression failure increases as the LN₂ cold shock time and the number of shock cycles goes up, and the uniaxial compressive strength decreases from 8.27 to 21.96%. Through SEM and NMR analysis, it is found that LN₂ cold shock can cause more micro-cracks to develop inside the concrete, and the pore development increases as the cold shock time and the cycle number increase. Additionally, under the condition of water jet pump pressure of 150 MPa, the maximum width and depth of crater for cold shock of 5 min increase by 41.79% and 20.48%, respectively, and those for cold shock of 10 min increase by 76.72% and 40.43%, respectively, compared with the original sample.

목차

Abstract
1. Introduction
2. Macro-Micro Failure Characteristics of Concrete Before and After LN₂ Cold Shock
3. Water Jet Impact Experiment
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0