메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민희 (창원대학교) 진교홍 (창원대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제2호
발행연도
2022.2
수록면
199 - 206 (8page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
제품을 생산하는 설비의 고장이나 이상 현상은 곧 제품의 결함 및 생산라인 가동 중단으로 이어져 제조 업체의 막대한 경제적 손실의 원인이 된다. 스마트팩토리 서비스의 확산으로 공장에서 많은 양의 데이터가 수집됨에 따라, 이를 활용하여 제조 현장의 효율이나 제조 설비의 고장 예측 및 진단을 위한 인공지능 기반의 연구가 활발히 이어지고 있다. 하지만 정상과 이상을 구분 짓는 레이블 정보가 명확하지 않고 이상에 대한 극심한 클래스 불균형을 가지는 제조 데이터의 특징으로 인하여 분류 모델이나 이상탐지 모델의 개발에는 큰 어려움이 존재한다. 본 논문에서는 딥러닝 모델의 재구성 손실값을 이용하여 제조 설비의 이상탐지를 위한 딥러닝 알고리즘을 제안하고 성능을 분석하였다. 해당 알고리즘은 이상 데이터를 제외한 설비의 제조 데이터, 즉 정상 데이터에만 의존하여 이상을 감지한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 설비 이상탐지 알고리즘
Ⅳ. 성능 평가
Ⅴ. 결론 및 향후 연구
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001093212