메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안영필 (청주대) 박현준 (청주대)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제3호
발행연도
2022.3
수록면
381 - 388 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인스턴스 분할에서 Mask-RCNN은 베이스 모델로 자주 사용된다. Mask-RCNN의 성능을 높이는 것은 파생된 모델에 영향을 미치기에 의미가 있다. Mask-RCNN에는 입력 이미지 크기를 배치 크기로 통일시키는 변환 모듈(transform module)이 있다. 이 논문에서는 Mask-RCNN의 성능 향상을 위해 변환 모듈의 크기 조정 부분에 딥러닝 기반 ASSR(Arbitrary-Scale Super-Resolution)을 적용하고, 스케일 정보를 모델의 IM(Integration Module)을 이용하여 주입한다. 제안하는 방법을 COCO 데이터세트에 적용하였을 때 인스턴스 분할 성능이 Mask-RCNN 성능보다 2.5AP 높았다. 그리고 제안하는 IM 위치 최적화를 위한 실험에서는 FPN(Feature Pyramid Network)과 백본(backbone)이 결합하기 전의 ‘Top’ 위치에 배치했을 때 가장 좋은 성능을 보였다. 따라서 제안하는 방법은 Mask-RCNN을 베이스 모델로 사용하는 모델들의 성능을 향상시킬 수 있다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 제안하는 성능 향상 기법
Ⅲ. 실험 및 결과분석
Ⅳ. 결론
REFERENCES

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001159226